PODMAN CI/CD WITH BASH IN DMZ
Karin I.E.

Karin Iliia Eduardovich - Master's degree in Information Systems in Economics and Management, DevOps Engineer with mor,.
INFRASTRUCTURE DEPARTMENT, INVENT INC., DUBAI, UAE.

Abstract: the article describes the use of Podman technology from RedHat corporation and shows an example of
this automated deployment into a DMZ Virtual Machine.
Keywords: podman, bash, virtual machine, information and technology, docker, devops, software development.

PODMAN CI/CD C BASH B DMZ
Kapun U.E.

Kapun Hnos D0yapoosuu - Mazcucmp ungopmayuonnsix cucmem 8 3KoHoMuke u meneoxcmenme, DevOps-unoicenep,
omoen ungpacmpyxmypsi, INVENT INC.,
2. Aybaii, Obveounennvie Apabekue Imupamol

Annomayus: ¢ cmamve onucano ucnonwv3osanue mexvoroeuu Podman om xopnopayuu RedHat u noxasan npumep
MAK020 a8MOMAMU3UPOBAHHO20 PA36EPMbIEAHUs 6 supmyaibHol mawune DMZ.

Knioueswte cnosa: podman, bash, supmyansnas mawuna, ungpopmayus u mexnonoeuu, ooxep, devops, paspabomra
NPOSPAMMHO20 0becneyeHus.

Docker is an open-source platform that automates the process of deploying, managing, and running applications
in containers. Containers are lightweight, self-contained, and portable environments that contain an application and
all its dependencies, including libraries and other components needed to run it.

The main components of Docker technology:

Docker Engine: The Docker core that manages containers. It includes a daemon that runs on the host machine
and a set of APIs for interacting with Docker.

Docker Images: Images are the templates from which containers are created. An image contains everything
needed to run the application: binaries, libraries, environment variables, configuration files, etc.

Docker Containers: Containers are instances of running Docker images. They are isolated processes that run
inside a shared environment (container). Each container has its own file system, network, and processes, but they
use the host machine kernel.

Docker Registry: The Docker Registry is a centralized repository of Docker images. It allows users to share
their created images and access images created by others.

m — TN
= T

B owevon

o

Ccvenr &
-

Benefits of Docker:

Portability: Containers enable high portability of applications. The application and its dependencies are
packaged in a container that can run on any platform where Docker is installed.

Isolation: Each container runs in an isolated environment, which prevents conflicts between applications and
ensures security.

Resource efficiency: Containers share a common host machine kernel, which saves resources and significantly
reduces container startup and shutdown times.

Scalability: Docker makes it easy to scale applications by allowing you to run multiple containers of the same
application on a single machine or distribute them across multiple servers.

Version management: Using containers simplifies application version management by allowing you to quickly
switch between different versions.

Docker is one of the most popular technologies for application development, testing, and deployment because it
greatly simplifies and accelerates the software development and maintenance process.

App A App B App C

Bins/Libs || Bins/Libs Bins/Libs
App A App B App C App D

Bins/Libs Bins/Libs Bins/Libs Docker Docker Bins/Libs

Guest OS Guest OS Guest OS
Docker

Host OS Hypervisor

Infrastructure Infrastructure

What's wrong with Docker?

Resource sharing: Containers share a common host operating system kernel and share resources with other
containers. This means that if one container is compromised, it may be easier for an attacker to move to other
containers running on the same host.

Container privileges: Incorrectly configured container privileges can allow an attacker to gain access to a host's
system resources. It is important to monitor what privileges are granted to the container and minimize them.

Network Isolation: By default, Docker containers have access to the host network, which can be dangerous, if
the host network does not really need to be accessible from the container. It is necessary to carefully configure the
network isolation of containers.

Linux kernel features: Docker utilizes Linux kernel features, and incorrect configuration or exploitation of
kernel vulnerabilities can affect container security.

Summarizing this section, we can say that the main problem with Docker is security, and it is a very serious
problem that can lead to the compromise of the whole company's system.

Podman is not the only one, but the best.

Image
Registry

&

docker

container

registry

kernel

Daemonless: One of the main differences between Podman and Docker is that Podman does not require a
constantly running daemon (service). This significantly reduces the potential attack vector.

Support for rootless containers: Podman allows you to run containers in rootless mode, which increases
security because containers do not have root privileges on the host system, and an exit attack from the container to
the host becomes impossible.

Pods management: Podman supports the concept of “pods”, which allows containers to be grouped into isolated
groups, making them easier to manage and communicate with each other.

Flexible container management: Podman allows containers to be run as a non-administrator user.

OCI support: Podman adheres to the Open Container Initiative (OCI) standards to ensure compatibility with
other OC tools, such as Docker, Kubernetes, and others.

But it's not all smooth sailing.

Lack of community and ecosystem: Compared to Docker, Podman has a smaller community of users and
developers and a smaller selection of third-party tools and support resources. Finding answers to your questions, and
instructions is much more difficult than with Docker.

Limited Windows and Mac support: Podman is designed primarily for Linux environments, and there is very
limited support for Windows and Mac OS.

So what can be built with Podman?

As an example, 1 will cite one of the past projects, it may seem unattractive or outdated, as Podman is developing
quite actively, but current projects can not be told to the readers for the same reason we can’t use docker.

And so, we will consider a very important transactional service that should be as secure as possible.

Since Podman is not the most convenient way to deploy a distributed application, we will use Podman-compose.

Git / Source Code

Control System Cl/CD system

l

. ¢ . Cl / CD system runner
Docker registry with DMZ access

l

VM in DMZ

Prerequisites:

The most difficult thing is to configure the final VM, since the machine is in DMZ, we can only run podman-
compose from a user with minimal permissions, and we will have to make the deployment and file transfers from a
user with no rights to run podman, and of course both users can not have root privileges, we can configure
commands with elevated rights to run in sudoers by specifying specific services to interact without entering sudo
password.

Example:

%podman-admin ALL=(podman) NOPASSWD: /bin/systemctl restart APPlication
%podman-admin ALL=(podman) NOPASSWD: /bin/systemctl stop APPlication
%podman-admin ALL=(podman) NOPASSWD: /bin/systemctl start APPlication
%podman-admin ALL=(podman) NOPASSWD: /bin/systemctl status APPlication

Since there is no internet access on the machine where we plan to run Podman, we will need to install
dependencies. The versions may be different at the moment, but the set of dependencies should be as follows:

attrs-21.4.0.tar.gz
black-22.3.0.tar.gz
build-0.7.0.tar.gz
click-8.0.4.tar.gz
coverage-6.2.tar.gz
dataclasses-0.8.tar.gz
distlib-0.3.4.zip
execnet-1.9.0.tar.gz
filelock-3.4.1.tar.gz
importlib_metadata-4.8.3.tar.gz
importlib_resources-5.4.0.tar.gz
iniconfig-1.1.1.tar.gz
jaraco.context-4.1.1.tar.gz
jaraco.envs-2.2.0.tar.gz
jaraco.functools-3.4.0.tar.gz

jaraco.packaging-9.0.0.tar.gz
jaraco.path-3.3.1.tar.gz
more-itertools-8.12.0.tar.gz
mypy-0.950.tar.gz
mypy_extensions-0.4.3.tar.gz
packaging-21.3.tar.gz
path-16.2.0.tar.gz
pathspec-0.9.0.tar.gz
pep517-0.12.0.tar.gz
pip-run-8.8.0.tar.gz
platformdirs-2.4.0.tar.gz
pluggy-1.0.0.tar.gz
py-1.11.0.tar.gz
pyparsing-3.0.8.tar.gz
pytest-7.0.1.tar.gz
pytest-black-0.3.12.tar.gz
pytest-cov-3.0.0.tar.gz
pytest-enabler-1.2.1.tar.gz
pytest-forked-1.4.0.tar.gz
pytest-mypy-0.9.1.tar.gz
pytest-xdist-2.5.0.tar.gz
python-dotenv-0.20.0.tar.gz
rst.linker-2.2.0.tar.gz
setuptools-40.8.0.zip
setuptools-62.1.0.tar.gz
singledispatch-3.7.0.tar.gz
six-1.16.0.tar.gz
Sphinx-4.5.0.tar.gz
toml-0.10.2.tar.gz
tomli-1.2.3.tar.gz
tomli_w-1.0.0.tar.gz
tox-3.25.0.tar.gz
typed_ast-1.5.3.tar.gz
typing_extensions-4.1.1.tar.gz
virtualenv-20.14.1.tar.gz
wheel-0.37.1.tar.gz
zipp-3.6.0.tar.gz

All of the above packages will be needed to run the podman-compose dependencies, which in turn will be as
follows:

pyenv-2.2.4-1.tar.gz
Python-3.10.2.tar.xz
python-dotenv-0.20.0.tar.gz
PyYAML-5.3.1.tar.gz
setuptools-62.1.0.tar.gz

Sample file: requirements.txt

[docs]

sphinx
jaraco.packaging>=9
rst.linker>=1.9

jaraco.tidelift>=1.4
pygments-github-lexers==0.0.5
sphinx-favicon
sphinx-inline-tabs
sphinxcontrib-towncrier

furo

[ssl]

[testing]

pytest>=6
pytest-checkdocs>=2.4
pytest-flake8
pytest-enabler>=1.0.1
pytest-perf

mock

flake8-2020
virtualenv>=13.0.0
wheel

pip>=19.1
jaraco.envs>=2.2
pytest-xdist
jaraco.path>=3.2.0
build[virtualenv]
filelock>=3.4.0
pip_run>=8.8
ini2toml[lite]>=0.9
tomli-w>=1.0.0

[testing-integration]
pytest

pytest-xdist
pytest-enabler
virtualenv>=13.0.0
tomli

wheel
jaraco.path>=3.2.0
jaraco.envs>=2.2
build[virtualenv]
filelock>=3.4.0

[testing:platform_python_implementation != "PyPy"]
pytest-black>=0.3.7

pytest-cov

pytest-mypy>=0.9.1

The podman-compose.py itself can be downloaded from GitHub (https://github.com/containers/podman-
compose). | also recommend checking out the official Podman instructions and guidelines
(https://docs.podman.io/en/latest/index.html). I’ve used v1.0.4 which is currently not available on Github, but there
are v0.1.5, and newer versions.

If you have root access to the target virtual machine it's much easier, in my case | had to interact with sudo
through a separate engineer, that's Fintech after all.

In my case, the first launch of the system took a lot of time due to the bureaucracy and complexity of interacting
with the end machine, but we are building a modern CI/CD, so further updates to the application should be quick
and easy.

His Majesty Bash!

Fintech...

It is forbidden to use anything other than bash, moreover, the user we connect to the VM does not have access
rights to the home directory of the user Podman, let's start building our monster:

Declaring the script to stop in case of an error in any of the commands.

I also like to decorate the output in stdout with color.

For convenience of further use, let's declare some variables.

$APP_NAME and $API_APP_NAME are declared in CI\CD system (for me it was Teamcity, | wrote the code
for Teamcity in Kotlin DSL, but this is a topic for a separate article).

#!/bin/bash
Exit from the script immediately if a command exits with a non-zero status.
set -e

Decoration by color
PURPLE=033[0;35m'
NoColor=033[0m'

Declare some variables
prometheus_image="xxx/prometheus:2.24.1-ubi8'
fluent_image="fluent/fluent-bit:1.6-debug’
nginx_image="nginx:1.18'

app_targz="$APP_NAME tar.gz"
api_targz="$API_APP_NAME tar.gz"
prometheus_targz="prometheus.tar.gz'
fluent_targz="fluent-bit.tar.gz'
nginx_targz="nginx.tar.gz'

Next, we need to declare a TRAP to remove the password from the runner and the application image in case the
script exits by mistake:

B R R R
HHHHHE
HH Hit
it trap_cleanup function accepts 1 argument HH
i 1st path to target file HH
it Example: trap_cleanup "trap_cleanup $CONTOUR/vault_pass" it
it Hit
A T
T
function trap_cleanup {
echo -e "\n${PURPLE} TRAP function has been executed! Deleting $1 file${NoColor}"
chmod 700 "$1"
rm -rf "$1"
echo -e "${PURPLE} $1 file successfully deleted.${NoColor}"
}

if [$CONTOUR = "dev"]; then

trap 'trap_cleanup "$CONTOUR/vault_pass"; trap_cleanup "$CONTOUR/vault_pass_local™ EXIT
elif [$CONTOUR = "ift"] || [$CONTOUR = "loadtest"]; then

trap 'trap_cleanup "$CONTOUR/vault_pass"; trap_cleanup "$CONTOUR/vault_pass_local"; trap_cleanup
"$CONTOUR/Iocal_pass™ EXIT

For such an important system there were of course more loops, testing, and such, but for simplicity's sake, | left
just a few.

My system uses several levels of security and encryption, and since we need to perform all our operations on a
remote machine, we need to create files for decryption and remote access, the very files that our traps trigger:

Create a password for SSH and docker to login
if [$CONTOUR = "dev"]; then

echo -e "\n${PURPLE}Create a password for and ssh docker to login...${NoColor}"

echo "$NEXUS_CI_PASS" > "$CONTOUR/vault_pass"

chmod 0400 "$CONTOUR/vault_pass"

echo -e "${PURPLE}Create a password for and ssh docker to login operation completed!${NoColor}\n"
fi

Create a local password for Ansible vault

echo -e "\n${PURPLE}Create local password for ansible...${NoColor}"

echo "$vault_pass" > "$CONTOUR/vault_pass_local"

chmod 0400 "$CONTOUR/vault_pass_local"

echo -e "${PURPLE}Create local password for ansible! Operation completed!${NoColor}\n"

Create a local password for SSH on ift and higher

if [SCONTOUR ="ift"] || [$CONTOUR = "loadtest" |; then
echo "$VM_LOCAL_PASSWD" > "$CONTOUR/local_pass"

fi

Simple decrypt ansible vault, check that the specified file is present and decrypt, or output an error:

B R R
HHHHHE
HH Hit
it decrypt_file function accepts 1 argument bizizd
it and will always use "$CONTOUR/vault_pass_local" to decrypt provided file. ittt
i 1st path to encrypted file it
it Example: decrypt_file "$CONTOUR/xxx/keyvault.jks" Hitt
#it #itt
HHR R R R R R R R R R R R
H
function decrypt_file {
echo -e "\n${PURPLE}Decrypt $1 ${NoColor}"
test -f "$1" && ansible-vault decrypt "$1" --vault-password-file "$CONTOUR/vault_pass_local" && \
echo -e "${PURPLE}Decrypt $1 Completed successfully!${NoColor}\n" ||\
echo -e "${PURPLE} Failed to decrypt $1. File not exist or not enough permissions.${NoColor}\n"

}

Since the end machine does not have access to our enterprise Docker registry, we need to prepare an image on
the runner, download it and archive it:

HAH R R R R R R
HHHHHH

Hit# Hit
Hith prepare_image function accepts 2 or 4 arguments.

it function downloads the image from the repository
HtH
HH# and archives it to tar.gz
HtH
HH# 1st - docker repository Hi#
HH# 2nd - application image name HiHt
HiHt 3rd - name of tar gzip Hitt
it 4th - application tag (version) it
#Hit# Hit
B R R R R
HHHHHHH?
function prepare_image {
if [-z "$4"]; then
echo -e "\n${PURPLE}Downloading $1/$2 image to agent and saving it to tar.gz${NoColor}"
docker pull "$1/$2"
echo -e "${PURPLE} $1/$2 image has been downloaded.${NoColor}"
echo -e "${PURPLE} Start archiving process for $1/$2 image.${NoColor}"
docker save "$1/$2" | gzip > "$3"
echo -e "${PURPLE}Downloading $1/$2 image to agent and saving it to tar.gz. Completed
successfully!${NoColor}\n"
else
echo -e "\n${PURPLE}Downloading $1/$2:$4 image to agent and saving it to tar.gz${NoColor}"
docker pull "$1/$2:$4"
echo -e "${PURPLE} $1/$2:$4 image has been downloaded.${NoColor}"
echo -e "${PURPLE} Start archiving process for $1/$2:$3 image.${NoColor}"
docker save "$1/$2:$4" | gzip > "$3"
echo -e "${PURPLE}Downloading $1/$2:$4 image to agent and saving it to tar.gz. Completed
successfully!${NoColor}\n*
fi
}

We have to remember to clean up the information on the runner:

B R R R R R
R
HH Hit
it docker_logout_rmi function accepts 2 or 3 arguments.
it function logout agent from docker repo and deletes local image
Hit 1st - docker repository HitH
Hit 2nd - application image name Hitt
Hit 3rd - application tag (version) Hit
#it #Hit#
HHR R R R R R R R R R R R R
A
function docker_logout_rmi {
if [-z"$3"]; then

echo -e "\n${PURPLE}Logout from Nexus $1, to delete credentials from docker config file.${NoColor}"

docker logout "$1"

echo -e "${PURPLE}Logout from Nexus $1 Completed successfully!${NoColor}\n"

echo -e "\n${PURPLE}Delete image $2 from agent.${NoColor}"

docker rmi "$1/$2"

echo -e "${PURPLE}Delete image $2 from agent. Completed successfully!${NoColor}\n"

else
echo -e "\n${PURPLE}Logout from Nexus $1, to delete credentials from docker config file.${NoColor}"

docker logout "$1"

echo -e "${PURPLE}Logout from Nexus $1 Completed successfully!${NoColor}\n"

echo -e "\n${PURPLE}Delete image $2:$3 from agent.${NoColor}"

docker rmi "$1/$2:$3"

echo -e "${PURPLE}Delete image $2:$3 from the agent. Completed successfully!${NoColor}\n"

Finally you can transfer the image to the final VM:

B R R R R
I
HtH HtH
HH# transfer_file function accepts 3 arguments. HH#
Hitt function transfers image to remote host Hit
HiH 1st - file name or path i
HiH 2nd - vault pass file HHt
#Hit# 3rd - VM username for transfer it
it it
S R R
i
function transfer_file {
echo -e "\n${PURPLE}Moving $1 to target host.${NoColor}"
test -f "$1" && sshpass -f "$2" scp "$1" "$3@$SPODMAN_VM:/tmp/" && \
echo -e "${PURPLE}Moving $1 image to target host. Completed!${NoColor}\n" \
I
echo -e "${PURPLE} Failed to transfer $1. File does not exist or not enough permissions.${NoColor}\n"
}

We have transferred the main application, now we need to transfer all the auxiliary images and files:

B R R R
HHHHHE
HH i
Hit transfer_dir function accepts 3 arguments. it
Hit function transfers image to remote host it
Hit 1st - Directory name or path it
Hit 2nd - vault pass file HiHt
HHH 3rd - VM username for transfer HH#
#it #itt
B R R A R
HHHHHE
function transfer_dir {
if test -d "$1"; then
echo -e "\n${PURPLE}Moving $1 to target host.${NoColor}"
sshpass -f "$2" scp -r "$1" "$3@$PODMAN_VM:/tmp/" && \
echo -e "${PURPLE}Moving $1 image to target host. Completed!${NoColor}\n"
else
echo -e "${PURPLE} Failed to transfer $1. Directory does not exist or not enough permissions.${NoColor}\n"
exit 1
fi
}

Let's load the Docker image on the target VM.
As you can see we have to pass commands to run on the remote VM because the podman user does not have
login privileges.

HAH R R R R
HHHHHHH

HtH HtH

it load_image function accepts 3 arguments. it
it function transfers image to remote host it

it 1 st- image archive name or path Hitt

it 2nd - vault pass file Hitt

Hith 3rd - VM username for command execution Hith
it ittt

B R R A R
A
function load_image {
echo -e "\n${PURPLE}Load $1 docker image on remote host.${NoColor}"
sshpass -f "$2" ssh "$3@$PODMAN_VM" "
sudo -u podman /bin/bash -c 'cd /tmp && \
podman load -i /tmp/$1™
echo -e "${PURPLE}Load $1 docker image on remote host. Completed successfully!${NoColor}\n"

}

Let's not forget to clear the home directory:

B R R R
i
it #Hith
HitH clean_up_podman_home function accepts 2 arguments. it
i function deletes files and folders P
HitH from previous installation in podman home directory on remote host HHt
HitH 1st - vault pass file it
HiHt 2nd - VM username for command execution Hit
HH i
B R R R
HHHHHE
function clean_up_podman_home {

echo -e "\n${PURPLE}Cleanup podman home directory on remote host.${NoColor}"

sshpass -f "$1" ssh "$2@$PODMAN_VM" "

sudo -u podman /bin/bash -c ‘cd /tmp; \

test -d /app/home/podman/folderl && chmod -R 755 /app/home/podman/folderl || echo Failed to chmod folderl
dir. Dir not exist or not enough permissions; \

test -f /app/home/podman/folderN/file.env && chmod 755 /app/home/podman/folderN/file.env || echo Failed to
chmod file.env. File does not exist or not enough permissions; \

rm -rf /app/home/podman/docker-compose.yaml; \

rm -rf /app/home/podman/podman_compose.py; \

rm -rf /app/home/podman/folderl; \

rm -rf /app/home/podman/folderN™

echo -e "\n${PURPLE}Cleanup podman home directory on remote host. Completed
successfully!${NoColor}\n"

¥

Now let's move our new release from tmp to the podman home directory:

HH R R A
T
HtH HtH
Hitt move_files_to_podman_home function accepts 2 arguments.
Hitt function moves new files and folders Hit#
HH# for new installation from tmp to podman home directory on remote host
Hitt 1st - vault pass file HitH
Hith 2n - VM username for command execution Hit#
Hith #Hith
HH R
HitHHHHH
function move_files_to_podman_home {
echo -e "\n${PURPLE}Copy all files from tmp to podman home folder.${NoColor}"
sshpass -f "$1" ssh "$2@$PODMAN_VM" "

sudo -u podman /bin/bash -c 'cd /tmp && \

cp -f /tmp/docker-compose.yaml /app/home/podman/docker-compose.yaml && \

cp -f /tmp/podman_compose.py /app/home/podman/podman_compose.py && \

cp -rf /tmp/folderl /app/home/podman/folderl && \

cp -rf /tmp/fluent-bit /app/home/podman/fluent-bit && \

cp -rf /tmp/prometheus /app/home/podman/prometheus && \

cp -rf /tmp/nginx /app/home/podman/nginX && \

cp -rf tmp/$SAPP_NAME /app/home/podman/$APP_NAME && \

cp -rf tmp/$API_APP_NAME /app/home/podman/$AP1_APP_NAME™

echo -e "\n${PURPLE}Copy all files from tmp to podman home folder. Completed
successfully!${NoColor}\n*

}

More cleaning:

HHR R R S R R R R R R R R R
H
#it #Hit#
it clean_up_tmp function accepts 2 arguments. it
it function cleans up tmp folder on remote host it
i 1st - vault pass file HitH
HiHt 2nd - VM username for command execution Hit
HH i
B R R R
H
function clean_up_tmp {

echo -e "\n${PURPLE}Cleanup tmp folder.${NoColor}"

sshpass -f "$1" ssh "$2@$PODMAN_VM" "

rm -rf /tmp/$app_targz && \

rm -rf /tmp/$api_targz && \

rm -rf /tmp/$prometheus_targz && \

rm -rf /tmp/$fluent_targz && \

rm -rf /tmp/$nginx_targz && \

rm -rf /tmp/fluent-bit && \

rm -rf /tmp/prometheus && \

rm -rf /tmp/nginX && \

rm -rf /tmp/$APP_NAME && \

rm -rf /tmp/$API_APP_NAME && \

rm -rf /tmp/podman_compose.py && \

rm -rf /tmp/folderl && \

rm -rf /tmp/docker-compose.yaml"
echo -e "${PURPLE}Cleanup tmp folder. Completed successfully!${NoColor}\n"

}

Depending on the outline, we need to substitute hostname in the prometheus.yml settings:

HH R R
HitHHHHH
Hith #Hith
HH# hostname_in_prometheus_config function accepts 2 arguments. Hit#
HH# function changes HOSTNAME in prometheus.yml based on the host it was deployed. Hit#
HH# 1st - vault pass file HitH
Hitt 2nd - VM username for command execution HitH
HtH HtH
B R R R
i
function hostname_in_prometheus_config {
echo -e "\n${PURPLE}Change hostname inside prometheus.yml file.$3{NoColor}"
sshpass -f "$1" ssh "$2@$PODMAN_VM" "
sudo -u podman /bin/bash -c ‘cd /tmp && \
sed -i SsS@@HOSTNAME@ @/${HOSTNAMEZ}/g /app/home/podman/prometheus/prometheus.yml™
echo -e "${PURPLE}Change hostname inside prometheus.yml file. Completed successfully!${NoColor}\n"

}

Clear the docker cache folder:

S R R R
H
HH i
it clean_up_docker_tmp function accepts 2 arguments. i
it function cleans up /var/tmp/docker folder on remote host it
i 1st - vault pass file HitH
HiHt 2nd - VM username for command execution Hit
HH i
HHR R R S R R R R R R R R R
H
function clean_up_docker_tmp {
echo -e "\n${PURPLE}Clean tmp podman folder on remote host.${NoColor}"
sshpass -f "$1" ssh "$2@$PODMAN_VM" "
sudo -u podman /bin/bash -c 'df -h /var && \
rm -rf /var/tmp/docker* && \
df -h /var™
echo -e "${PURPLE}Clean tmp podman folder on remote host. Completed successfully!${NoColor}\n"

}

Let's fix the file permissions:

HAH R R R R R R
HHHHHH
HiHt Hitt

it permissions function accepts 2 arguments. it
it function changes secrets.env, xxx folder and xxx files permissions to secure H#it

it 1 - vault pass file Hitt
Hitt 2 - VM username for command execution Hit#
HtH HtH
B R R R R
T
function permissions {
echo -e "\n${PURPLE}Change permissions for xxx and secret files.${NoColor}"
sshpass -f “$1" ssh "$2@$PODMAN_VM" *
sudo -u podman /bin/bash -c 'cd /tmp && \
chmod 644 /app/home/podman/folderl/* && \
chmod 711 /app/home/podman/folderl && \
chmod 600 /app/home/podman/folderN/secrets.env
echo -e "\n${PURPLE}Change permissions for folderN and secret files. Completed successfully!${NoColor}\n"

}

Finally, we can run podman-compose:

S R R
i
it #Hith
HitH execute_podman_compose function accepts 3 arguments. i
itz function changes secrets.env, folderl folder and folderl files permissions to secure i
HH# 1st - vault pass file HitH
Hitt 2nd - VM username for command execution HitH
HH# 3rd - path to python binary i
H HHt
S R R
i
function execute_podman_compose {
echo -e "\n${PURPLE}Execute podman_compose.py up -d --force-recreate.${NoColor}"
sshpass -f "$1" ssh "$2@$PODMAN_VM" "
sudo -u podman /bin/bash -c ‘cd /app/home/podman/ && \
chmod +x /app/home/podman/podman_compose.py && \
$3 podman_compose.py up -d --force-recreate™
echo -e "${PURPLE}Execute podman_compose.py. Completed successfully!${NoColor}\n"

}

All that remains is to run all these functions in the sequence we want:

R T R R R R R T R R R R TR A
HAH R R R R R
HAH R R R R R

Decrypt secrets.env
decrypt_file "$SCONTOUR/$APP_NAME/secrets.env"

Decrypt application jks
if [$CONTOUR = "dev"]; then
decrypt_file "$CONTOUR/folder1/application.jks"
decrypt_file "$CONTOUR/folderl/application.key"
elif [SCONTOUR = "ift"]; then

Pull SAPP_NAME image and save it to tar gz

if [$CONTOUR = "dev"]; then
prepare_image "$DOCKER_CI" "$APP_NAME" "$app_targz"
prepare_image "$DOCKER_CDL" "$API_APP_NAME" "$api_targz" "$API_APP_VER"
prepare_image "$DOCKER_COMMON" "$fluent_image" "$fluent_targz"
prepare_image "$DOCKER_COMMON" "$prometheus_image" “$prometheus_targz"
prepare_image "$DOCKER_CDL" "$nginx_image" "$nginx_targz"

elif [$CONTOUR = "ift"] || [$CONTOUR = "loadtest"]; then

fi

Logout from Nexus-Cl, and cleanup local repo on agent.

if [SCONTOUR = "dev"]; then
docker logout rmi "$DOCKER_CI" "$APP_NAME"
docker_logout_rmi "$DOCKER_CD" "$API_APP_NAME" "$API_APP_VER"
docker_logout_rmi "$DOCKER_COMMON" "$fluent_image"
docker_logout_rmi "$DOCKER_COMMON" "$prometheus_image"
docker_logout_rmi "$DOCKER_CD" "$nginx_image"

elif [SCONTOUR = "ift"]; then

fi

Move all images to target host
if [SCONTOUR = "dev"]; then
transfer_file "$app_targz" "$CONTOUR"/vault_pass "$SNEXUS_CI_USER@domain-name.com"
transfer_file "$api_targz" "$CONTOUR"/vault_pass "$NEXUS Cl_USER@domain-name.com"
transfer_file "$fluent_targz" "$CONTOUR"/vault_pass "$SNEXUS_CI_USER@domain-name.com"
transfer_file "$prometheus_targz" "$CONTOUR"/vault_pass "$NEXUS_Cl_USER@domain-name.com"
transfer_file "$nginx_targz" "$CONTOUR"/vault_pass "$NEXUS_Cl_USER@domain-name.com"
elif [$CONTOUR = "ift"] || [$CONTOUR = "loadtest"]; then
transfer_file "$app_targz" "$CONTOUR"/local_pass "$VM_LOCAL_USER"
transfer_file "$api_targz" "$CONTOUR"/local_pass "$VM_LOCAL_USER"
transfer_file "$fluent_targz" "$CONTOUR"/local_pass "$VM_LOCAL_USER"
transfer_file "$prometheus_targz" "$CONTOUR"/local_pass "$VM_LOCAL_USER"
transfer_file "$nginx_targz" "$CONTOUR"/local_pass "$VM_LOCAL_USER"
fi

Move docker-compose, podman-compose and folderl files to target host
echo -e "\n${PURPLE}Moving docker-compose, podman-compose and folder1 files to target host.${NoColor}"
chmod -R 777 "$CONTOUR"/folderl
if [SCONTOUR = "dev"]; then
transfer_file "$CONTOUR/docker-compose.yaml" "$CONTOUR/vault_pass" "$NEXUS_CI_USER@domain-
name.com"
transfer_file "podman_compose.py" "$CONTOUR/vault_pass" "SNEXUS_CI_USER@domain-name.com"
sshpass -f "$SCONTOUR"/vault_pass scp -pr "$SCONTOUR"/folderl "$NEXUS_CIl_USER"@domain-
name.com@"$PODMAN_VM":/tmp/folderl
elif [$CONTOUR = "ift"] || [$CONTOUR = "loadtest"]; then

transfer_file "$CONTOUR/docker-compose.yaml* "$CONTOUR/local_pass” “"$VM_LOCAL_USER"
transfer_file "podman_compose.py" "$CONTOUR/local_pass" "$VM_LOCAL_USER"
sshpass -f "$CONTOUR"/local_pass scp -pr "$CONTOUR"/folderl
"$VM_LOCAL_USER"@"$PODMAN_VM":/tmp/folderl
fi
echo -e "${PURPLE}Moving docker-compose, podman-compose and folder1 files to target host. Completed
successfully!${NoColor}\n"

Move configmap for SAPI_APP_NAME and $APP_NAME. Move fluent-bit + prometheus + nginx config
files to remote host
if [SCONTOUR = "dev"]; then
transfer_dir "SCONTOUR/$APP_NAME" "$CONTOUR/vault_pass" "$NEXUS_CI_USER@domain-
name.com"
transfer_dir "$SCONTOUR/$API_APP_NAME" "$CONTOUR/vault_pass" "$NEXUS_CI_USER@domain-
name.com"
transfer_dir "$CONTOUR/fluent-bit" "$CONTOUR/vault_pass" "$NEXUS_Cl_USER@domain-name.com"
transfer_dir "$CONTOUR/prometheus” "$CONTOUR/vault_pass" "$NEXUS_Cl_USER@domain-name.com"
transfer_dir "$CONTOUR/nginx" "$CONTOUR/vault_pass" "$NEXUS_Cl_USER@domain-name.com"
elif [SCONTOUR = "ift"] || [$CONTOUR = "loadtest"]; then
transfer_dir "SCONTOUR/$APP_NAME" "$CONTOUR/local_pass" "$VM_LOCAL_USER"
transfer_dir "$CONTOUR/$API_APP_NAME" "$CONTOUR/local_pass" "$VM_LOCAL_USER"
transfer_dir "SCONTOUR/fluent-bit" "$CONTOUR/local_pass" "$VM_LOCAL_USER"
transfer_dir "SCONTOUR/prometheus” "$CONTOUR/local_pass" "$VM_LOCAL_USER"
transfer_dir "$CONTOUR/nginx" "$CONTOUR/Iocal_pass" "$VM_LOCAL_USER"
fi

##t# Restore privileges on secrets.env file.
echo -e "\n${PURPLE}Restore privileges on secrets.env file.${NoColor}"
if [SCONTOUR = "dev"]; then
sshpass -f "$CONTOUR"/vault_pass ssh "$NEXUS_CI_USER"@domain-name.com@"$PODMAN_VM" "
chmod 644 /tmp/$APP_NAME/secrets.env"
elif [SCONTOUR = "ift"] || [$CONTOUR = "loadtest"]; then
sshpass -f "$CONTOUR"/local_pass ssh "$VM_LOCAL_USER"@"$PODMAN_VM" "
chmod 644 /tmp/$APP_NAME/secrets.env"
fi
echo -e "${PURPLE}Restore privileges on secrets.env file. Completed successfully!${NoColor}\n"

#it# Cleanup before copy new files to target dir on remote host
if [$CONTOUR = "dev"]; then
clean_up_podman_home "$CONTOUR/vault_pass" "$NEXUS_CI_USER@domain-name.com"
elif [$CONTOUR = "ift"] || [$CONTOUR = "loadtest"]; then
clean_up_podman_home "$CONTOUR/Iocal_pass" "$VM_LOCAL_USER"
fi

Move files to target dir on remote host
if [SCONTOUR = "dev"]; then
move_files_to_podman_home "$CONTOUR/vault_pass" "$NEXUS_CI_USER@domain-name.com"
elif [SCONTOUR ="ift"] || [$CONTOUR = "loadtest"]; then
move_files_to_podman_home "$CONTOUR/local_pass" "$VM_LOCAL_USER"
fi

Change permissions for folderl and secret files
if [$CONTOUR = "dev"]; then
folderl permissions "$CONTOUR/vault_pass" "$NEXUS_Cl_USER@domain-name.com"
elif [$CONTOUR = "ift"] || [$CONTOUR = "loadtest"]; then
folderl permissions "$CONTOUR/local_pass" "$VM_LOCAL_USER"
fi

Clean tmp podman folder on remote host
if [SCONTOUR = "dev"]; then
clean_up_docker_tmp "$CONTOUR/vault_pass" "$NEXUS_CI_USER@domain-name.com"
elif [SCONTOUR = "ift"] || [$CONTOUR = "loadtest"]; then
clean_up_docker_tmp "$CONTOUR/local_pass" "$VM_LOCAL_USER"
fi

| oad docker images on remote host.
if [SCONTOUR = "dev"]; then
load_image "$app_targz" "$CONTOUR/vault_pass" "$NEXUS_CI_USER@domain-name.com"
load_image "$api_targz" "$CONTOUR/vault_pass" "$NEXUS_CIl_USER@domain-name.com"
load_image "$prometheus_targz" "$CONTOUR/vault_pass" "$NEXUS_CI_USER@domain-name.com"
load_image "$fluent_targz" "$CONTOUR/vault_pass" "$NEXUS_CI_USER@domain-name.com"
load_image "$nginx_targz" "$CONTOUR/vault_pass" "$NEXUS_Cl_USER@domain-name.com"
elif [SCONTOUR = "ift"]; then
load_image "$app_targz" "$CONTOUR/local_pass" "$VM_LOCAL_USER"
load_image "$api_targz" "$CONTOUR/local_pass" "$VM_LOCAL_USER"
load_image "$prometheus_targz" "$CONTOUR/local_pass" "$VM_LOCAL_USER"

load_image "$fluent _targz" "$CONTOUR/local_pass" "$VM_LOCAL_USER"
load_image "$nginx_targz" "$CONTOUR/local_pass" "$VM_LOCAL_USER"
fi

Change hostname inside prometheus.yml file
if [SCONTOUR = "dev"]; then
hostname_in_prometheus_config "SCONTOUR/vault_pass" "$NEXUS_Cl_USER@domain-name.com"
elif [SCONTOUR ="ift"] || [$CONTOUR = "loadtest"]; then
hostname_in_prometheus_config "$CONTOUR/local_pass" "$VM_LOCAL_USER"
fi

Execute podman_compose.py up -d --force-recreate on remote host
if [SCONTOUR = "dev"]; then
echo -e "\n${PURPLE}Execute podman_compose.py up -d --force-recreate.${NoColor}"
sshpass -f "$CONTOUR"/vault_pass ssh "$NEXUS_CI_USER"@domain-name.com@"$PODMAN_VM" "
sudo -u podman /bin/bash -c ‘cd /app/home/podman/ && \
chmod +x /app/home/podman/podman_compose.py && \
./podman_compose.py up -d --force-recreate™
echo -e "${PURPLE}Execute podman_compose.py. Completed successfully!${NoColor}\n"
elif [$CONTOUR = "ift"]; then
execute_podman_compose "$CONTOUR/local_pass" "$VM_LOCAL_USER"
"lapp/pyenv/versions/3.10.2/bin/python"
elif [SCONTOUR = "loadtest"]; then
execute_podman_compose "$CONTOUR/local_pass" "$VM_LOCAL_USER"
"/app/home/podman/pyenv/versions/3.10.2/bin/python"

##t# Cleanup everywhere
if [SCONTOUR = "dev"]; then

clean_up_tmp "$CONTOUR/vault_pass" "$NEXUS_CI_USER@domain-name.com"
elif [SCONTOUR ="ift"] || [$CONTOUR = "loadtest"]; then

clean_up_tmp "$CONTOUR/local_pass" "$VM_LOCAL_USER"
fi

Conclusion.

So our Podman DMZ CI\CD on BASH is ready, Fintech is happy, security department guys are happy too,
normal people are shocked and went to take pills.

In general, configuring and debugging Podman is a complicated procedure, Podman-compose is even more
complicated, and Podman-compose in DMZ without access to VM is almost impossible, but as you can see it is
solvable.

Honestly speaking debugging and configuration of VM, Teamcity, Podman and the whole pipeline as a whole
took a lot of sleep for me, at some moments podman simply refused to start containers or crashed for unknown
reasons, and neither Google nor Stackoverflow did not help.

In conclusion, the integration of Podman with BASH CI/CD pipelines offers numerous benefits. It provides a
secure, efficient, and automated way to manage the software development process. As such, it is a valuable tool for
any development team looking to improve their workflow and increase their productivity in a secure environment.

Future work could explore more advanced uses of these tools, such as integrating them with other technologies
or tools or using them to automate more complex tasks. Regardless, the potential of Podman and BASH in CI/CD
technology is clear, and we look forward to seeing how they will continue to shape the future of software
development.

References / Cnucox numepamypul

=

Official Podman project website. [Electronic Resource]. URL: https://podman.io (date of access: 15.11.2023).

2. Official GNU Bash project website. [Electronic Resource]. URL: https://www.gnu.org/software/bash (date of
access: 05.12.2023).

3. Official podman-compose Github registry. [Electronic Resource]. URL.: https://github.com/containers/podman-

compose (date of access: 30.11.2023).

https://podman.io/
https://www.gnu.org/software/bash
https://github.com/containers/podman-compose
https://github.com/containers/podman-compose

